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We introduce a simple one-parameter game derived from a model describing the properties of a directed
polymer in a random medium. At its turn, each of the two players picks a move among two alternatives in order
to maximize its final score, and minimize the opponent’s return. For a game of length n, we find that the
probability distribution of the final score Sn develops a traveling wave form, Prob�Sn=m�= f�m−vn�, with the
wave profile f�z� decaying unusually as a double exponential for large positive and negative z. In addition, as
the only parameter in the game is varied, we find a transition where one player is able to get its maximum
theoretical score. By extending this model, we suggest that the front velocity v is selected by the nonlinear
marginal stability mechanism arising in some traveling wave problems for which the profile decays exponen-
tially, and for which standard traveling wave theory applies.

DOI: 10.1103/PhysRevE.78.061106 PACS number�s�: 02.50.�r, 05.40.�a

Extreme value statistics of random variables has been
long studied by mathematicians �1,2� and physicists �3–5�. In
physics, it naturally arises when studying thermodynamical
properties of disordered systems �6�, and, in particular, the
distribution of the ground state energy �4,5�.

If the considered random variables E1 ,E2 , . . . ,EN are un-
correlated, the distribution of Emin=miniEi or Emax=maxiEi
becomes universal for large N, once properly scaled �1,2�. It
takes the form of the Gumbel, Fréchet, or Weibull distribu-
tion depending on the asymptotic properties of the distribu-
tion of the Ei’s. However, in the case of strongly correlated
random variables, there are no general results, and it is usu-
ally a formidable task to access to the distribution of Emin or
Emax.

In �4�, the authors study a simple model of a directed
polymer on a Cayley tree, inspired from the original work of
�6�, but focusing on the ground state properties �i.e., zero
temperature�. The simplest version of the model is defined on
a Cayley tree developed over n generations, and with Z
branches originating from each node. The polymer made of n
bonds starts from the root node, and for a given path on the
tree, the total length of the polymer �assimilated to its en-
ergy� is

Epath = �
i�path

li. �1�

The elementary lengths li are quenched random variables
associated with each bond of the tree and independently
drawn from the same random distribution ��l�. The hierar-
chical structure of the Cayley tree induces strong correlations
between the different possible energies �or lengths� of the
polymer. One is then interested in the distribution of the
minimal energy Emin, i.e., the ground state energy. Because
of these strong correlations, the ground state energy distribu-
tion is not expected to fall into one of the three universality
classes arising in the case of independent random variables
�4,5�, the best known of them being the Gumbel distribution

�1,2�. In the special case of the binary distribution

��l� = p�l,1 + �1 − p��l,0, p � �0,1� , �2�

the authors of �4� obtained an unbinding transition when p
� pc=1−Z−1, where the polymer goes from a finite length to
an extensive length �Emin��v�p�n. In addition, the distribu-
tion of Emin has a traveling front form

P�Emin,n� = f„Emin − v�p�n… , �3�

where f�z� decays exponentially fast for large negative argu-
ment. This last property and the general theory of traveling
waves �7–11� lead to a simple selection mechanism for the
front velocity v�p� �linear marginal stability; see hereafter�.

In the present work, we define a game theoretical model,
directly inspired by this directed polymer model. Although
our model lacks any thermodynamical reference, it is cer-
tainly related to other optimization problems, where the no-
tions of extreme value statistics and traveling fronts arise �3�.

Two players A and B play an alternating game of duration
n, with player A starting the game. When it is its turn to play,
a player has a choice of Z possible moves. Hence, the map of
all possible game histories has the structure of a Cayley tree
with Z branches originating from any node, and of length 2n.
The ith move by player A brings it the additional score ai,
whereas the next play by player B adds the value bi to the
score of player A. The score of player B is defined as the
opposite of that of player A. The elementary scores ai and bi
are quenched random variables independently drawn from
the same distribution �. Ultimately, the final score of player
A is

Epath = �
i�path

ai + bi. �4�

The goal of player A is to maximize its final score, whereas
player B will do its best to select its plays in order to mini-
mize the score of player A, and hence maximize its own
score. The two players have an a priori knowledge of the
game tree structure so that the final score of player A is
defined as*clement.sire@irsamc.ups-tlse.fr
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Sn = max
available choices of A

min
available choices of B

Epath. �5�

From now, we specialize to the case Z=2, although our re-
sults can be easily extended to any Z. Moreover, we restrict
ourselves to the elementary score distribution given by Eq.
�2�. It should be emphasized that the players do not pick their
next play in order just to maximize its local outcome �i.e., A
picking its next move among available branches with ai=1
or B picks the minimum available bi�. If the players were
adopting such a simple depth-0 strategy, which would be
their natural approach if they did not have the prior knowl-
edge of the ai and bi distribution over the tree, the final score
of player A would be simply the sum of n independent vari-
ables of mean p2+2p�1− p� �A picks a branch with ai=1, if
there is one available�, and n variables of mean p2 �B picks a
branch with bi=0, if there is one available�. Then the distri-
bution of Sn would be a Gaussian �of width ��	n�, and
mean �Sn�=v0�p�n, with

v0�p� = p2 + 2p�1 − p� + p2 = 2p . �6�

Note that this result is identical to the score velocity obtained
if the players had picked their move at random: the depth-0
strategies of both players exactly annihilate. Instead, having
a global view of the game tree, the players will try to direct
the game into favorable branches for them, in order to maxi-
mize their final score, even if they may have sometimes to
pick an unfavorable local move �ai=0 for player A, bi=1 for
player B� in order to achieve their goal. For p�1 /2, there
are more bonds with ai=1 or bi=1, so that we expect that the
objective of player A should be easier to achieve than that of
player B. Hence, we anticipate that �Sn�=v�p�n, with

v�p� � v0�p� = 2p, p �
1

2
. �7�

In the opposite case p�1 /2, the above inequality is obvi-
ously reversed. In fact, by exchanging the roles of A and B
�and neglecting the fact that A starts the game, for large n�, it
is clear that one has the symmetry relation �4�

v�p� + v�1 − p� = 2. �8�

In addition, one has the trivial constraints,

v�0� = 0, v�1/2� = 1, v�1� = 2, �9�

which are consistent with Eq. �8�.
An intermediate strategy to the ones presented above cor-

responds to players having only a partial view of the game
tree up to a finite depth. For instance, if the players have the
knowledge of there next available move, and of their oppo-
nent’s ensuing options, they should adopt the following
depth-1 strategy.

�1� Player A: if the options of player A are equal �both
ai=0 or 1�, A picks the branch for which the number of bi
equal to 1 �when it is the turn of B to play� is maximal. If
only one branch corresponds to ai=1, A chooses this move.

�2� Player B: if the options of player B are equal �both
bi=0 or 1�, B picks the branch for which the number of ai+1
equal to 1 is minimal. If only one branch corresponds to bi
=0, B picks this move.

After an elementary but cumbersome calculation, we find
that the score velocity v1�p� corresponding to this depth-1
strategy is given by

v1�p� = 2p27 − 6p + 4p2 − 14p3 + 14p4 − 4p5

1 + 2p + 6p2 − 16p3 + 8p4 . �10�

One has v1�p��v0�p� for p�1 /2, and v1�p� satisfies the
symmetry relation of Eq. �8� and the conditions of Eq. �9�.
For higher but finite strategy depth, an analytical treatment
becomes extremely complicated.

Let us now move back to our model, where both players
have a global knowledge of the game tree �infinite depth�.
Obtaining the �not necessarily unique� optimal path realizing
both players antagonistic goals can be achieved by using the
recursive MINIMAX algorithm �12�, which gives a more pre-
cise meaning to Eq. �5�. Let us assume that we have gener-
ated four instances of optimized scores Sn

�k� �k=1,2 ,3 ,4� on
four independent games of length n �with the initial condi-
tion Sn

�k�=0, for n=0�. In order to construct an optimized
score for a game of length n+1, we first generate two inter-
mediate scores including the previous move of player B �see
Fig. 1�,

Rn
�1� = min�Sn

�1� + b1,Sn
�2� + b2� ,

Rn
�2� = min�Sn

�3� + b3,Sn
�4� + b4� . �11�

Then the final score is obtained by optimizing the first move
of player A over his two possible plays a1 and a2 �see Fig. 1�:

Sn+1 = max�Rn
�1� + a1,Rn

�2� + a2� . �12�

Using Eqs. �11� and �12�, we can derive the corresponding
recursion relations for the cumulative distribution of Sn and
Rn,

Pn�m� = Prob�Sn � m� ,

Qn�m� = Prob�Rn � m� , �13�

and starting from the initial condition Pn�m�=1 for m�0,
and Pn�m�=0 for m�0. Defining q=1− p, we find

Qn�m� = 1 − �1 − qPn�m� − pPn�m − 1��2, �14�

FIG. 1. �Color online� Sn+1 can be obtained recursively from
four optimized scores Sn

�k� �k=1,2 ,3 ,4�, and finding the next opti-
mized move from player B and then from player A.
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Pn+1�m� = �qQn�m� + pQn�m − 1��2. �15�

The intermediate distribution Qn�m� can be eliminated by
inserting Eq. �14� into Eq. �15�, leading to a single recursion
relation between Pn+1 and Pn. The probability density of Sn is
defined as

pn�m� = Pn�m� − Pn�m − 1� . �16�

We look for a traveling wave form for Pn�m�,

Pn�m� = F�m − �Sn��, �Sn� = v�p�n , �17�

with the boundary conditions F�z�→1, for z→ +	, and
F�z�→0, for z→−	. The probability density of Sn has a
similar traveling wave form, associated with the hull func-
tion f�z�:

pn�m� = f�m − �Sn��, f�z� = F�z� − F�z − 1� . �18�

Inserting this ansatz into Eqs. �14� and �15�, we find that F
satisfies the following functional equation:

	F�z − v� = 1 − q�1 − qF�z� − pF�z − 1��2

− p�1 − qF�z − 1� − pF�z − 2��2, �19�

where we have used the shorthand notation v for v�p�. By
retaining the leading contributions in Eq. �19� for z→−	,
and for v�0, we find

F�z − v� � 4q4F2�z� , �20�

which leads to the double exponential asymptotics

F�z� � f�z� �
1

4q4 exp�− 
−2
z
/v� , �21�

where 
−�0 is an unknown p-dependent constant. Similarly,
in the opposite limit z→ +	, and assuming v�2, the func-
tional equation �19� reduces to

1 − F�z − v� � 2p3�1 − F�z − 2��2, �22�

which again leads to a double exponential decay

1 − F�z − 1� � f�z� �
1

2p3 exp�− 
+2z/�2−v�� , �23�

where 
+�0 is some p-dependent constant. Hence, and con-
trary to the standard traveling wave theory �3–5�, where the
traveling front exponential decay for z→−	 or z→ +	 per-
mits the determination of the front velocity, v�p� remains so
far undetermined. Here, the double exponential decay ob-
tained on both sides results from the MINIMAX constraint,
instead of the usual MIN �or MAX� constraint imposed when
considering the ground state energy or the minimum �or
maximum� path length distribution �4,5�. This fast decay of
f�z� for z→ �	 and the traveling wave form of Eq. �18�
ensure that ��Sn−v�p�n�2� remains bounded when n→ +	.

v�p� can still be determined numerically, from its defini-
tion �Sn�=v�p�n. The results are shown in Fig. 2, along with
v0�p� and v1�p� which correspond to depth-0 and depth-1
strategies respectively. The main feature of v�p� is the exis-
tence of a critical value of p �denoted pc�, above which the
score front velocity is v�p�=2 �note that one also has v1��1�

=0�. Moreover, and as mentioned above, v0�p� is a lower
bound of v�p�. Finally, for p close to 1 /2, v�p� grows lin-
early with p, with

v0��1/2� = 2,

v��1/2� � 2.123�1� ,

v1��1/2� =
37

16
= 2.3125. �24�

In the symmetric case p=1 /2, we find that �Sn�=n+�0,
where �0=0.142 916 95. . . is a strictly positive constant, il-
lustrating the slight advantage that A gains from starting the
game.

Let us give a physical explanation for the occurrence of
this transition. As p�1 /2 increases, the number of paths
along which all the ai’s and bi’s are equal to 1 grows expo-
nentially. Indeed, the probability of having such a path is p2n,
so that their total number in the tree is of order 22n� p2n. The
existence of this transition shows that, for p� pc, player A is
able to chose his moves in order to force the outcome of the
game to follow one of these path, with probability unity, as
n→	. Symmetrically, for p�1− pc, player B will find
enough branches along which most ai’s and bi’s are equal to
0, in order to enforce that the front velocity remains zero in
this regime, consistently with the symmetry relation of Eq.
�8�.

This transition can be understood analytically, by studying
the stability of a traveling front of velocity v�p�=2. Noting
that Pn�2n�=Qn�2n+1�=1 �since Sn�2n and Rn�2n+1�,
we consider the dynamics of un= Pn�2n−1��1. From Eqs.
�14� and �15�, un satisfies the recursion relation

un+1 = �1 − p3�1 − un�2�2, �25�

with u0=0. un= Pn�2n−1�=1 is an obvious fixed point of Eq.
�25�, corresponding to the case v�p��2. If this fixed point is
selected, and after linearizing Eq. �25�, we find that

0.5 0.6 0.7 0.8 0.9 1
p

1

1.2

1.4

1.6

1.8

2

v(
p)

FIG. 2. �Color online� We plot the score velocity front v�p� �full
line�, the lower bound v0�p�=2p �lower dashed line�, and v1�p�,
obtained when the players adopt a depth-1 strategy �upper dashed
line�. For p�1 /2, v�p� is obtained by symmetry, using Eq. �8�. The
heuristic expression of Eq. �30� cannot be distinguished from the
numerical data at this scale.

CONTEST BASED ON A DIRECTED POLYMER IN A… PHYSICAL REVIEW E 78, 061106 �2008�

061106-3



ln�1 − Pn�2n − 1�� � − 2n, �26�

which is fully consistent with Eq. �23�, with z=2n−1
−v�p�n. However, the recursion relation of Eq. �25� has three
other fixed points �x− ,x+ ,x0�, which can be obtained analyti-
cally by solving a third-order polynomial equation, leading
to cumbersome expressions. A detailed analysis shows that
x0 is always real, with x0�1. This fixed point is unphysical
and necessarily unstable. The two other fixed points are real
for p� pc �x−�x+�, with

pc =
3

4
� 21/3 = 0.944 94 . . . , �27�

and complex conjugates for p� pc. Moreover, one finds that
x− is maximal for p= pc, at which x�=1 /9. Finally, a stability
analysis shows that x− is the only stable fixed point for pc
� p�1. Hence, we conclude that Pn�2n−1� converges �ex-
ponentially fast� to x− for pc� p�1, and that the distribution
of Sn is peaked near m=2n and decays as a double exponen-
tial for m2n �as given by Eq. �21��, leading to v�p�=2. The
obtained value of pc is in perfect agreement with the numeri-
cal results for v�p� plotted on Fig. 2. Close to p=1, x−
�9�1− p�2→0, and up to second order in �1− p�, the distri-
bution of Sn is thus given by

pn�2n� = 1 − 9�1 − p�2, pn�2n − 1� = 9�1 − p�2. �28�

Note that, if both players adopt a finite depth strategy, this
transition does not occur, as illustrated in Fig. 2 in the case of
the depth-0 and depth-1 strategies considered above. By
adopting a short-sighted strategy, player A �B� cannot direct,
with probability 1, the sequence of plays to a branch of the
tree with a density unity of playing options ai=bi=1 �ai
=bi=0�.

Finally, for p below but close to pc, we obtain a very
convincing fit of v�p� to the functional form

v�p� = 2 − c�pc − p�1/2 + ¯ , �29�

with c�0.50�1�, leading to an infinite slope for v�p� at p
= pc

−, as found numerically on Fig. 2. In fact, for p�1 /2, we
find that the simple heuristic functional form

v�p� = 2 − 2� �pc − p��1 − p�
2pc − 1

1/2

�30�

fits the data with a relative accuracy better than 0.1%, com-
parable with although slightly higher than the estimated nu-
merical error bars of the data. This functional form ensures
that v�1 /2�=1 and that the behavior of Eq. �29� is repro-
duced, and leads to the heuristic values

v��0� = 2.120 99 . . . , c = 0.497 48 . . . , �31�

in good agreement with the numerical estimates presented
above.

Let us now address the properties of the hull function f�z�,
and its cumulative sum F�z�. First of all, if for a given p, the
corresponding v�p� happens to be a rational number v�p�
=
 /� �
 and � being mutually prime�, Eq. �19� implies that
the hull function is only defined on the discrete set of frac-
tions of the form k /�. This is in particular the case for p

=1 /2 �v�1 /2�=1�, p� pc �v�p�=2�, and p�1− pc �v�p�=0�.
On the other hand, when v�p� is irrational, the set of points
of the form z=m−v�p�n is dense on the real axis, and f�z� is
a continuous function defined on the real axis. As v�p� ap-
proaches v�pc�=2 from below, the hull function f�z� devel-
ops steps which blend into discontinuities as p→pc. This
property is illustrated in Fig. 3, along with the asymptotics
obtained in Eqs. �21� and �23�.

We now extend our original model in order to gain some
insight into the velocity selection mechanism. This is
achieved by modifying the model so that the standard theory
of front propagation will apply. In this �A ,�� model, player A
always follows its best strategy, while player B follows the
depth-0 strategy �picking a branch with bi=0 if available�
with probability � and its optimal strategy with probability
1−�. The original model is hence recovered for �=0. The
recursion relation of Eq. �14� now becomes

Qn�m� = �1 − ���1 − �1 − qPn�m� − pPn�m − 1��2�

+ ���q2 + 2pq�Pn�m� + p2Pn�m − 1�� , �32�

while Eq. �15� remains unchanged. We denote the associated
front velocity by vA�p ,��. Note that, if B is playing purely
randomly, the terms q2+2pq and p2 in Eq. �32� must be
replaced, respectively, by q and p. This model has exactly
the same qualitative properties as the �A ,�� model, on which
we hence concentrate, since player B adopts a more intelli-
gent strategy �some results obtained for the random model
will be mentioned in passing�. In the �B ,�� model, one ex-
changes the role of players A and B, and Eq. �15� is changed
into

Pn+1�m� = �1 − ���qQn�m� + pQn�m − 1��2

+ ��q2Qn�m� + �p2 + 2pq�Qn�m − 1�� , �33�

whereas Eq. �14� still holds. When exchanging the role of the
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FIG. 3. �Color online� Hull function f�z� for p=0.944 95� pc,
for which v�p�=2, and which is defined on negative integer values
of z �dots linked by a dotted line�. For p=0.9449 slightly below pc

�v�p�=1.996 84. . . �, the hull function is continuous but exhibits
smooth steps at integer values of z �corresponding thin line�. Fi-
nally, for p=0.75 �v�p�=1.531 46. . . �, we plot the continuous hull
function �thick line� along with the predicted asymptotics of Eqs.
�21� and �23� �dashed lines�.
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two players, the associated front velocity vB�p ,�� satisfies
the symmetry relation

vA�p,�� + vB�1 − p,�� = 2, �34�

which reduces to Eq. �8�, when �=0. However, for ��0,
vA�p ,�� and vB�1− p ,�� do not obey the symmetry relation
of Eq. �8�. In addition, we have the exact inequalities

vB�p,�� � v�p� � vA�p,�� , �35�

since players B and A are, respectively, playing less opti-
mally in the �A ,�� and �B ,�� models than in the original
model.

Because of the symmetry relation of Eq. �34�, we focus on
the �A ,�� model, and denote the associated velocity simply
by v. The �A ,�� model’s main interest lies in the fact that for

��0 P̄n�m�=1− Pn�m� decays exponentially for m�vn, so
that the standard mechanisms of front velocity selection do

apply �see below�. When P̄n�m�1, the recursions of Eqs.
�15� and �32� indeed lead to

P̄n+1�m� = 2���1 + p��1 − p�2P̄n�m�

+ p�1 − p��2p + 1�P̄n�m − 1� + p3P̄n�m − 2�� ,

�36�

or, equivalently, the front profile F̄�z�=1−F�z� satisfies

F̄�z − v� = 2���1 + p��1 − p�2F̄�z� + p�1 − p��2p + 1�F̄�z − 1�

+ p3F̄�z − v�� , �37�

to be compared to Eq. �22�, for the original model. The

simple ansatz F̄�z��exp�−�z� leads to the dispersion rela-
tion

v��� =
1

�
ln�2��1 − p + pe���1 − p2 + p2e��� , �38�

where the decay rate � is so far undetermined.
Let us now summarize the main known mechanisms of

velocity front selection �7–11� for exponentially fast decay-
ing profiles. In many physical cases, including those studied
in �4,5�, a linear marginal stability �LMS� argument shows
that the selected front velocity corresponds to the minimum
velocity vmin allowed by the dispersion relation v���, associ-
ated with the decay rate �min. However, in some other cases
�9–11�, a bigger velocity is selected by a nonlinear marginal
stability �NLMS� mechanism. Without entering into too
much detail, let us briefly explain this point. Consider the
large-z asymptotics of a solution of the full nonlinear prob-
lem associated to the velocity v,

F̄�z� � A1�v�e−�1�v�z + A2�v�e−�2�v�z + ¯ , �39�

with �1�v���min given by the dispersion relation derived
from linear analysis. Note that the above linear analysis does
not grant access to A1�v�, not to mention the correction term
proportional to A2�v�. Now, if there exists a velocity v*
�vmin for which A1�v*�=0, F̄�z� will decay more sharply
with rate �2�v*�, which is necessarily another root of the

dispersion relation, with �2�v*���min. It can be shown that
all traveling fronts with velocity less than v* are then un-
stable against invasion by a profile of velocity v*, which
leads to the selection of the velocity front v*, instead of vmin

�9–11�. In practice, there are very few examples for which
the transition between a linear and a nonlinear marginal sta-
bility scenario can be analytically identified, since it requires
in general a full solution of the profile associated to a veloc-
ity v, in order to obtain A1�v�. To the knowledge of the
author, all such tractable examples concern traveling fronts
in the spatial and temporal continuum �9–11�, like, for in-
stance,

�P

�t
=

�2P

�x2 + P�1 − P��1 + �P� , �40�

for ��1. In this case �9,11�, v���=�+�−1, so that vmin=2
and �min=1. vmin is selected for 1���2, whereas v=v*
= �� /2�1/2+ �� /2�−1/2 �with �1= �� /2�−1/2 and �2= �� /2�1/2�,
for ��2.

Returning to our �A ,�� model, we find that a nontrivial
vmin exists for any ��1 /2. It is obtained by first finding �min,
the unique real positive solution of

v���min� = 0, �41�

and setting vmin=v��min� in Eq. �38�. In particular, we find
that vmin=2, for p� pc, with

pc = �2��−1/3. �42�

In the case �=1, when player B always adopts the depth-0
strategy, we find pc=2−1/3=0.793 700 5. . .. Hence, we obtain
the same kind of transition as in the original model, where
player A is able to get its maximum theoretical score. How-
ever, since B has a short-sighted strategy, we do not observe
a transition to v=0 for small but nonzero p, as obtained in
the original model for p=1− pc. We actually find vmin�
−ln�2�� / ln�p�, when p→0. Note that if B plays randomly
instead of adopting the depth-0 strategy, we obtain the dis-
persion relation

v��� =
1

�
ln�2��1 − p + pe��2� , �43�

and pc= �2��−1/2.
However, for a given p, we find numerically that the ve-

locity given by the LMS mechanism vmin is selected only for
���c�p�, so that the results of Eqs. �38�, �41�, and �42� are
valid only for � close enough to 1. For 1 /2����c�p��1,
and although a nontrivial vmin does exist, we find v�vmin.
This strongly suggests the relevance of the NLMS mecha-
nism in this case. Unfortunately, for 1 /2����c�p� and a
given v, there is very little hope of obtaining an analytical
solution of the corresponding full nonlinear equation for
F�z�, in order to apply the NLMS criterion explained above.
Likewise, for ��1 /2, the minimal positive velocity is vmin
=0 �v��=0�=−	�, and the prospect of an analytical solution
appears even bleaker. Note however that v and the associated
decay rate � are still related by the dispersion relation of Eq.
�38�.
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On the bright side, the full line pc��� can be determined
exactly, by studying the dynamics of un=1− Pn�2n−1�, in
the same spirit as in the case �=0. We find that un satisfies
the exact recursion relation

un+1 � gp,��un� = zn�2 − zn� , �44�

zn = p3un�� + �1 − ��un� , �45�

with u0=1. We then determine the value of pc��� above
which there exists a stable nontrivial fixed point u*����0.
For ��4 /5, we find that pc��� is indeed given by the LMS
argument, leading to the result of Eq. �42�. On the other
hand, for 0���4 /5, a regime where the NLMS mechanism
should be relevant, pc��� and u*��� are determined in the
same spirit as in the case �=0, by imposing the condition
that gpc,��u*� /u*−1=gpc,�� �u*�−1=0. We find

pc��� = � �1 − ��1/2�4 − ��3/2 − 8 + 7� + �2

2�2 1/3

, �46�

which goes smoothly to the result of Eq. �27�, when �→0.
Interestingly, this analysis provides the exact value of �c

for the corresponding value of p= pc��c�= �2�c�−1/3, at the
transition between the LMS and NLMS regimes. We thus
find

�c�p =
51/3

2
= 0.854 988 . . .  =

4

5
. �47�

If B plays randomly instead of adopting the depth-0 strategy,
one obtains

�c�p =
1 + 	5

4
= 0.809 017 . . .  = 3 − 	5 = 0.763 932 . . . .

�48�

In Fig. 4, we plot our exact result for pc��� and a numeri-
cal estimate of �c�p�, the boundary between the LMS and
NLMS domains of application. In Fig. 5, we plot vA�p ,��
and vB�p ,�� for �=1, where B and A are respectively adopt-
ing the depth-0 strategy, for �=4 /5, the smallest � for which
the LMS mechanism applies for all p, and for �=1 /4, for
which the NLMS mechanism holds for all p. We observe
numerically that vA�p ,�� and vB�p ,�� converge smoothly to
v�p� as �→0.

Let us finally address the subleading corrections to the
average score �Sn�. The LMS mechanism implies �7,10� that

�Sn� = vminn −
3

2�min
ln n + ¯ . �49�

In the �� , p� regime where the LMS mechanism applies, we
have confirmed numerically the occurrence of this logarith-
mic correction, as well as its magnitude. In the NLMS re-
gime, we find instead that the next correction to �Sn�=vn is
constant. Quite generally, this result can be justified analyti-
cally whenever v�vmin, in particular when the NLMS
mechanism applies �13�. This property was exploited in or-
der to obtain the numerical estimate of �c�p� shown in Fig. 4,
and this criterion is found to be fully consistent with defining

�c�p� as the value of � for which v becomes equal to the
velocity vmin selected by the LMS mechanism �see Eqs. �38�,
�41�, and �42��.

In the present work, we have defined a simple two-player
game inspired by a model of a directed polymer on the Cay-
ley tree. The fact that the two players have antagonist goals
is reminiscent of the notion of frustration quite common in
disordered physical systems. In our model, this frustration
originates from the MINIMAX constraint, which is, however,
quite uncommon in physics. As a consequence, the present
model has no thermodynamical interpretation. We found that
the score distribution develops a traveling wave form, with
the hull function unusually decaying superexponentially for
large negative and positive arguments. We have justified ana-
lytically the occurrence of a transition, across which a player
can obtain its maximum theoretical score, whatever the strat-
egy of the other player. In contrast to systems for which the
standard traveling wave theory applies, we did not succeed
in understanding analytically the process which leads to the

0 0.2 0.4 0.6 0.8 1
ε

0

0.2

0.4

0.6

0.8

1

p

v=2

v=v
min

v=2

v>v
min

=0 v>v
min

ε
c
(p)

p
c
(ε)

FIG. 4. �Color online� We plot the exact pc��� above which
vA�p ,��=2 �full line�, whose LMS and NLMS expressions are re-
spectively given by Eqs. �42� and �46�. We also plot the numerical
estimate of �c�p� �thick dashed line�, the boundary between the
LMS and NLMS domains of application. These two curves cross at
��c , pc�= �4 /5,51/3 /2� �dot�. We also identify three domains accord-
ing to the relation between the observed front velocity v and the
LMS velocity vmin.
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FIG. 5. �Color online� We plot the velocities vA�p ,�� �three
upper dashed lines, �=1,4 /5,1 /4 from top� and vB�p ,�� �three
lower dashed lines, �=1,4 /5,1 /4 from bottom�. The full line cor-
responds to v�p� for the original model ��=0�.
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selection of the velocity front. However, after studying an
extension of the original model, we strongly suggest that the
selection mechanism is related to nonlinear marginal stabil-
ity, arising in some traveling wave problems for which the
profile decays exponentially.
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